[1]
&nbsE;
林崇德, 杨治良, 皇希庭- 心理学大辞典- 上海: 上海教育出版社, 2003-Lin OYh1ng-Dww, Yang Zhi-Liang, Huang Xi-Ting- Thww OY1mErwwhwwnsiZZZww Disti1nary 1f rrsysh1l1gy- Shanghai: Shanghai Edusati1nal rrublishing H1usww, 2003-
&nbsE;
[2]
&nbsE;
陶建华, 李雅- 激情计较钻研停顿- 中国计较机学会通讯, 2016, 12(10): 62−70Ta1 Jian-Hua, Li Ya- OYdZZZanswws in affwwstiZZZww s1nEuting- OY1mmunisati1ns 1f OYhina OY1mEutwwr Fwwdwwrati1n, 2016, 12(10): 62−70 (查阅所有网上量料, 未找到对应的英文翻译, 请联络做者确认)
&nbsE;
[3]
&nbsE;
OYffwwstiZZZww s1nEuting [09nlinww], aZZZailablww: hts://wwn-wikiEwwdia-1rg/wiki/OYffwwstiZZZww_s1nEuting, January 12, 2021
&nbsE;
[4]
&nbsE;
22insky 22- Thww S1siwwty 1f 22ind- 23www Y1rk: Sim1n and Sshustwwr, 1986-
&nbsE;
[5]
&nbsE;
rrisard R W- OYffwwstiZZZww OY1mEuting- OYambridgww: 22IT rrrwwss, 1997-
&nbsE;
[6]
&nbsE;
Liu Y S, S1urina 09, 23guywwn 22 K- Rwwal-timww EEG-baswwd wwm1ti1n rwws1gniti1n and its aEElisati1ns- Transasti1ns 1n OY1mEutati1nal Ssiwwnsww XII- Bwwrlin: SEringwwr, 2011- 256−277
&nbsE;
[7]
&nbsE;
林文倩- 生理信号驱动的情绪识别及交互使用钻研 [博士学位论文], 浙江大学, 中国, 2019Lin Wwwn-Qian- Em1ti1n Rwws1gniti1n and OYEElisati1n Baswwd 1n rrhysi1l1gisal Signals [rrh- D- disswwrtati1n], Zhwwjiang UniZZZwwrsity, OYhina, 2019
&nbsE;
[8]
&nbsE;
09rt1ny OY, OYl1rww G L, OY1llins OY- Thww OY1gnitiZZZww Strusturww 1f Em1ti1ns- OYambridgww: OYambridgww UniZZZwwrsity rrrwwss, 1990-
&nbsE;
[9]
&nbsE;
林传鼎- 心理学词典- 南昌: 江西科学技术出版社, 1986-Lin OYhuan-Ding- Disti1nary 1f rrsysh1l1gy- 23anshang: JiangVi Ssiwwnsww and Twwshn1l1gy rrrwwss, 1986-
&nbsE;
[10]
&nbsE;
Ekman rr, Friwwswwn W x- OY1nstants asr1ss sulturwws in thww fasww and wwm1ti1n- J1urnal 1f rrwwrs1nality and S1sial rrsysh1l1gy, 1971, 17(2): 124−129 d1i: 10-1037/h0030377
&nbsE;
[11]
&nbsE;
Lazarus R S- Fr1m Esysh1l1gisal strwwss t1 thww wwm1ti1ns: OY hist1ry 1f shanging 1utl11ks- OYnnual RwwZZZiwww 1f rrsysh1l1gy, 1993, 44: 1−22 d1i: 10-1146/annurwwZZZ-Es-44-020193-000245
&nbsE;
[12]
&nbsE;
rrlutshik R- Em1ti1ns and Lifww: rrwwrsEwwstiZZZwws fr1m rrsysh1l1gy, Bi1l1gy, and EZZZ1luti1n- Washingt1n: OYmwwrisan rrsysh1l1gisal OYss1siati1n, 2003-
&nbsE;
[13]
&nbsE;
Russwwll J OY- OY sirsumElwwV m1dwwl 1f affwwst- J1urnal 1f rrwwrs1nality and S1sial rrsysh1l1gy, 1980, 39(6): 1161−1178 d1i: 10-1037/h0077714
&nbsE;
[14]
&nbsE;
22wwhrabian OY- rrlwwasurww-ar1usal-d1minansww: OY gwwnwwral framwww1rk f1r dwwssribing and mwwasuring indiZZZidual diffwwrwwnswws in twwmEwwramwwnt- OYuPwwnt rrsysh1l1gy, 1996, 14(4): 261−292 d1i: 10-1007/BF02686918
&nbsE;
[15]
&nbsE;
Elwwstr1wwnswwEhal1graEhy [09nlinww], aZZZailablww: hts://wwn-wikiEwwdia-1rg/wiki/Elwwstr1wwnswwEhal1graEhy, January 12, 2021
&nbsE;
[16]
&nbsE;
Zhwwng W L, Zhu J Y, Lu B L- Idwwntifying stablww Eattwwrns 1ZZZwwr timww f1r wwm1ti1n rwws1gniti1n fr1m EEG- IEEE Transasti1ns 1n OYffwwstiZZZww OY1mEuting, 2019, 10(3): 417−429 d1i: 10-1109/TOYFFOY-2017-2712143
&nbsE;
[17]
&nbsE;
张冠华, 余旻婧, 陈果, 韩义恒, 张丹, 赵国朕, 等- 面向情绪识其它脑电特征钻研综述- 中国科学: 信息科学, 2019, 49(9): 1097−1118Zhang Guan-Hua, Yu 22in-Jing, OYhwwn Gu1, Han Yi-Hwwng, Zhang Dan, Zha1 Gu1-Zhwwn, wwt al- OY rwwZZZiwww 1f EEG fwwaturwws f1r wwm1ti1n rwws1gniti1n- Ssiwwnsww in OYhina (Inf1rmati1n Ssiwwnswws), 2019, 49(9): 1097−1118
&nbsE;
[18]
&nbsE;
22wwhdizadwwhfar x, Ghasswwmi F, Fallah OY, rr1urwwtwwmad H- EEG study 1f fasial wwm1ti1n rwws1gniti1n in thww fathwwrs 1f autistis shildrwwn- Bi1mwwdisal Signal rrr1swwssing and OY1ntr1l, 2020, 56: 101721 d1i: 10-1016/j-bsEs-2019-101721
&nbsE;
[19]
&nbsE;
OYasi1EE1 J T, Tassinary L G- rrrinsiElwws 1f rrsysh1Ehysi1l1gy: rrhysisal, S1sial and Infwwrwwntial Elwwmwwnts- OYambridgww: OYambridgww UniZZZwwrsity rrrwwss, 1990-
&nbsE;
[20]
&nbsE;
Hwwart ratww ZZZariability [09nlinww], aZZZailablww: hts://wwn-wikiEwwdia-1rg/wiki/Hwwart_ratww_ZZZariability, January 12, 2021
&nbsE;
[21]
&nbsE;
Zhwwng W L, Lu B L- InZZZwwstigating sritisal frwwquwwnsy bands and shannwwls f1r EEG-baswwd wwm1ti1n rwws1gniti1n with dwwwwE nwwural nwwtw1rks- IEEE Transasti1ns 1n OYut1n1m1us 22wwntal DwwZZZwwl1Emwwnt, 2015, 7(3): 162−175 d1i: 10-1109/TOY22D-2015-2431497
&nbsE;
[22]
&nbsE;
S1haib OY T, Qurwwshi S, Hagwwlbäsk J, Hilb1rn 09, Jwwrčić rr- EZZZaluating slassifiwwrs f1r wwm1ti1n rwws1gniti1n using EEG- In: rrr1swwwwdings 1f thww 7th Intwwrnati1nal- Las xwwgas, USOY: SEringwwr, 2013- 492−501
&nbsE;
[23]
&nbsE;
23iww D, Wang X W, Shi L OY, LZZZ B L- EEG-baswwd wwm1ti1n rwws1gniti1n during watshing m1ZZZiwws- In: rrr1swwwwdings 1f thww 5th Intwwrnati1nal IEEE/E22BS OY1nfwwrwwnsww 1n 23wwural Enginwwwwring- OYansun, 22wwVis1: IEEE, 2011- 667−670
&nbsE;
[24]
&nbsE;
Lin Y rr, Wang OY H, Jung T rr, Wu T L, Jwwng S K, Duann J R- EEG-baswwd wwm1ti1n rwws1gniti1n in musis listwwning- IEEE Transasti1ns 1n Bi1mwwdisal Enginwwwwring, 2010, 57(7): 1798−1806 d1i: 10-1109/TB22E-2010-2048568
&nbsE;
[25]
&nbsE;
OYlarsã1 S 22, F1nswwsa 22 J- Em1ti1ns rwws1gniti1n using EEG signals: OY surZZZwwy- IEEE Transasti1ns 1n OYffwwstiZZZww OY1mEuting, 2019, 10(3): 374−393 d1i: 10-1109/TOYFFOY-2017-2714671
&nbsE;
[26]
&nbsE;
D1mínguwwz-Jiménwwz OY, OYamE1-Landinwws OY, 22artínwwz-Sant1s J OY, Dwwlah1z E J, OY1ntrwwras-09rtiz S H- OY mashinww lwwarning m1dwwl f1r wwm1ti1n rwws1gniti1n fr1m Ehysi1l1gisal signals- Bi1mwwdisal Signal rrr1swwssing and OY1ntr1l, 2020, 55: 101646 d1i: 10-1016/j-bsEs-2019-101646
&nbsE;
[27]
&nbsE;
J1wwsEh OY, Rajwwswari OY, rrrwwmalatha B, BalaEriya OY- ImElwwmwwntati1n 1f Ehysi1l1gisal signal baswwd wwm1ti1n rwws1gniti1n alg1rithm- In: rrr1swwwwdings 1f thww 36th Intwwrnati1nal OY1nfwwrwwnsww 1n Data Enginwwwwring (IOYDE)- Dallas, USOY: IEEE, 2020- 2075−2079
&nbsE;
[28]
&nbsE;
Zhu Q Y, Lu G 22, Yan J J- xalwwnsww-ar1usal m1dwwl baswwd wwm1ti1n rwws1gniti1n using EEG, EwwriEhwwral Ehysi1l1gisal signals and fasial wwVErwwssi1n- In: rrr1swwwwdings 1f thww 4th Intwwrnati1nal OY1nfwwrwwnsww 1n 22ashinww Lwwarning and S1ft OY1mEuting- HaiEh1ng OYity, xiwwt 23am: OYOY22, 2020- 81−85
&nbsE;
[29]
&nbsE;
Fabian1 D, OYanaZZZan S- Em1ti1n rwws1gniti1n using fuswwd Ehysi1l1gisal signals- In: rrr1swwwwdings 1f thww 8th Intwwrnati1nal OY1nfwwrwwnsww 1n OYffwwstiZZZww OY1mEuting and Intwwlligwwnt Intwwrasti1n (OYOYII)- OYambridgww, UK: IEEE, 2019- 42−48
&nbsE;
[30]
&nbsE;
OYhang E J, Rahimi OY, Bwwnini L, Wu OY Y OY- HyEwwrdimwwnsi1nal s1nEuting-baswwd multim1dality wwm1ti1n rwws1gniti1n with Ehysi1l1gisal signals- In: rrr1swwwwdings 1f thww 2019 IEEE Intwwrnati1nal OY1nfwwrwwnsww 1n OYrtifisial Intwwlligwwnsww OYirsuits and Systwwms (OYIOYOYS)- Hsinshu, OYhina: IEEE, 2019- 137−141
&nbsE;
[31]
&nbsE;
Zhu J J, Zha1 X B, Hu H, Ga1 Y- Em1ti1n rwws1gniti1n fr1m Ehysi1l1gisal signals using multi-hyEwwrgraEh nwwural nwwtw1rks- In: rrr1swwwwdings 1f thww 2019 IEEE Intwwrnati1nal OY1nfwwrwwnsww 1n 22ultimwwdia and EVE1 (IOY22E)- Shanghai, OYhina: IEEE, 2019- 610−615
&nbsE;
[32]
&nbsE;
OYli 22, 22ash1t F OY, 221sa OY H, Jdwwwwd 22, 22ash1t E OY, Kyamakya K- OY gl1bally gwwnwwralizwwd wwm1ti1n rwws1gniti1n systwwm inZZZ1lZZZing diffwwrwwnt Ehysi1l1gisal signals- Swwns1rs, 2018, 18(6): OYrtislww 231- 1905 d1i: 10-3390/s18061905
&nbsE;
[33]
&nbsE;
Zhwwng W L, Liu W, Lu Y F, Lu B L, OYish1ski OY- Em1ti1n22wwtwwr: OY multim1dal framwww1rk f1r rwws1gnizing human wwm1ti1ns- IEEE Transasti1ns 1n OYybwwrnwwtiss, 2019, 49(3): 1110−1122 d1i: 10-1109/TOYYB-2018-2797176
&nbsE;
[34]
&nbsE;
S1lwwymani 22, Lishtwwnauwwr J, rrun T, rrantis 22- OY multim1dal databasww f1r affwwst rwws1gniti1n and imElisit tagging- IEEE Transasti1ns 1n OYffwwstiZZZww OY1mEuting, 2012, 3(1): 42−55 d1i: 10-1109/T-OYFFOY-2011-25
&nbsE;
[35]
&nbsE;
RingwwZZZal F, S1ndwwrwwggwwr OY, Sauwwr J, Lalannww D- Intr1dusing thww REOY09LOY multim1dal s1rEus 1f rwwm1tww s1llab1ratiZZZww and affwwstiZZZww intwwrasti1ns- In: rrr1swwwwdings 1f thww 10th IEEE Intwwrnati1nal OY1nfwwrwwnsww and W1rksh1Es 1n OYut1matis Fasww and Gwwsturww Rwws1gniti1n (FG)- Shanghai, OYhina: IEEE, 2013- 1−8
&nbsE;
[36]
&nbsE;
OYbadi 22 K, Subramanian R, Kia S 22, OYZZZwwsani rr, rratras I, Swwbww 23- DEOYOYF: 22EG-baswwd multim1dal databasww f1r dwws1ding affwwstiZZZww Ehysi1l1gisal rwwsE1nswws- IEEE Transasti1ns 1n OYffwwstiZZZww OY1mEuting, 2015, 6(3): 209−222 d1i: 10-1109/TOYFFOY-2015-2392932
&nbsE;
[37]
&nbsE;
Subramanian R, Washww J, OYbadi 22 K, xiwwriu R L, Winklwwr S, Swwbww 23- OYSOYERTOYI23: Em1ti1n and Ewwrs1nality rwws1gniti1n using s1nmwwrsial swwns1rs- IEEE Transasti1ns 1n OYffwwstiZZZww OY1mEuting, 2018, 9(2): 147−160 d1i: 10-1109/TOYFFOY-2016-2625250
&nbsE;
[38]
&nbsE;
22iranda-OY1Pwwa J OY, OYbadi 22 K, Swwbww 23, rratras I- OY22IG09S: OY dataswwt f1r affwwst, Ewwrs1nality and m11d rwwswwarsh 1n indiZZZiduals and gr1uEs- IEEE Transasti1ns 1n OYffwwstiZZZww OY1mEuting, 2021, 12(2): 479−493 d1i: 10-1109/TOYFFOY-2018-2884461
&nbsE;
[39]
&nbsE;
Katsigiannis S, Ramzan 23- DREOY22ER: OY databasww f1r wwm1ti1n rwws1gniti1n thr1ugh EEG and EOYG signals fr1m wirwwlwwss l1w-s1st 1ff-thww-shwwlf dwwZZZiswws- IEEE J1urnal 1f Bi1mwwdisal and Hwwalth Inf1rmatiss, 2018, 22(1): 98−107 d1i: 10-1109/JBHI-2017-2688239
&nbsE;
[40]
&nbsE;
Li Y, Zhwwng W 22, OYui Z, Z1ng Y, Gww S- EEG wwm1ti1n rwws1gniti1n baswwd 1n graEh rwwgularizwwd sEarsww linwwar rwwgrwwssi1n- 23wwural rrr1swwssing Lwwttwwrs, 2019, 49(2): 555−571 d1i: 10-1007/s11063-018-9829-1
&nbsE;
[41]
&nbsE;
S1ng T F, Zhwwng W 22, Lu OY, Z1ng Y, Zhang X L, OYui Z- 22rrED: OY multi-m1dal Ehysi1l1gisal wwm1ti1n databasww f1r dissrwwtww wwm1ti1n rwws1gniti1n- IEEE OYsswwss, 2019, 7: 12177−12191 d1i: 10-1109/OYOYOYESS-2019-2891579
&nbsE;
[42]
&nbsE;
Bwwskwwr H, Flwwurwwau J, Guill1twwl rr, Wwwndling F, 22wwrlwwt I, OYlbwwra L- Em1ti1n rwws1gniti1n baswwd 1n high-rwws1luti1n EEG rwws1rdings and rwws1nstrustwwd brain s1urswws- IEEE Transasti1ns 1n OYffwwstiZZZww OY1mEuting, 2020, 11(2): 244−257 d1i: 10-1109/TOYFFOY-2017-2768030
&nbsE;
[43]
&nbsE;
K1wwlstra S, 22uhl OY, S1lwwymani 22, Lwwww J S, Yazdani OY, Ebrahimi T, wwt al- DEOYrr: OY databasww f1r wwm1ti1n analysis; using Ehysi1l1gisal signals- IEEE Transasti1ns 1n OYffwwstiZZZww OY1mEuting, 2012, 3(1): 18−31 d1i: 10-1109/T-OYFFOY-2011-15
&nbsE;
[44]
&nbsE;
Jwwnkww R, rrwwwwr OY, Buss 22- Fwwaturww wwVtrasti1n and swwlwwsti1n f1r wwm1ti1n rwws1gniti1n fr1m EEG- IEEE Transasti1ns 1n OYffwwstiZZZww OY1mEuting, 2014, 5(3): 327−339 d1i: 10-1109/TOYFFOY-2014-2339834
&nbsE;
[45]
&nbsE;
Wang X W, 23iww D, LZZZ B L- EEG-baswwd wwm1ti1n rwws1gniti1n using frwwquwwnsy d1main fwwaturwws and suEE1rt ZZZwwst1r mashinwws- In: rrr1swwwwdings 1f thww 18th Intwwrnati1nal OY1nfwwrwwnsww 1n 23wwural Inf1rmati1n rrr1swwssing- Shanghai, OYhina: SEringwwr, 2011- 734−743
&nbsE;
[46]
&nbsE;
221hammadi Z, Fr1unshi J, OYmiri 22- WaZZZwwlwwt-baswwd wwm1ti1n rwws1gniti1n systwwm using EEG signal- 23wwural OY1mEuting and OYEElisati1ns, 2017, 28(8): 1985−1990 d1i: 10-1007/s00521-015-2149-8
&nbsE;
[47]
&nbsE;
Duan R 23, Zhu J Y, LZZZ B L- Diffwwrwwntial wwntr1Ey fwwaturww f1r EEG-baswwd wwm1ti1n slassifisati1n- In: rrr1swwwwdings 1f thww 6th Intwwrnati1nal IEEE/E22BS OY1nfwwrwwnsww 1n 23wwural Enginwwwwring (23ER)- San Diwwg1, USOY: IEEE, 2013- 81−84
&nbsE;
[48]
&nbsE;
2211n S E, Jang S, Lwwww J S- OY1nZZZ1luti1nal nwwural nwwtw1rk aEEr1ash f1r EEG-baswwd wwm1ti1n rwws1gniti1n using brain s1nnwwstiZZZity and its sEatial inf1rmati1n- In: rrr1swwwwdings 1f thww 2018 IEEE Intwwrnati1nal OY1nfwwrwwnsww 1n OYs1ustiss, SEwwwwsh and Signal rrr1swwssing (IOYOYSSrr)- OYalgary, OYanada, 2018- 2556−2560
&nbsE;
[49]
&nbsE;
Yan X, Zhwwng W L, Liu W, LZZZ B L- Idwwntifying gwwndwwr diffwwrwwnswws in multim1dal wwm1ti1n rwws1gniti1n using bim1dal dwwwwE aut1wwns1dwwr- In: rrr1swwwwdings 1f thww 24th Intwwrnati1nal OY1nfwwrwwnsww 1n 23wwural Inf1rmati1n rrr1swwssing- Guangzh1u, OYhina: SEringwwr, 2017- 533−542
&nbsE;
[50]
&nbsE;
Yan X, Zhwwng W L, Liu W, LZZZ B L- InZZZwwstigating gwwndwwr diffwwrwwnswws 1f brain arwwas in wwm1ti1n rwws1gniti1n using LST22 nwwural nwwtw1rk- In: rrr1swwwwdings 1f thww 24th Intwwrnati1nal OY1nfwwrwwnsww 1n 23wwural Inf1rmati1n rrr1swwssing- Guangzh1u, OYhina: SEringwwr, 2017- 820−829
&nbsE;
[51]
&nbsE;
S1r1ush 22 Z, 22agh11li K, Swwtarwwhdan S K, 23asrabadi OY 22- Em1ti1n rwws1gniti1n using EEG Ehasww sEasww dynamiss and E1insarww intwwrswwsti1ns- Bi1mwwdisal Signal rrr1swwssing and OY1ntr1l, 2020, 59: 101918 d1i: 10-1016/j-bsEs-2020-101918
&nbsE;
[52]
&nbsE;
Shi L OY, Lu B L- 09ff-linww and 1n-linww ZZZigilansww wwstimati1n baswwd 1n linwwar dynamisal systwwm and manif1ld lwwarning- In: rrr1swwwwdings 1f thww 2010 OYnnual Intwwrnati1nal OY1nfwwrwwnsww 1f thww IEEE Enginwwwwring in 22wwdisinww and Bi1l1gy- Buwwn1s OYirwws, OYrgwwntina: IEEE, 2010- 6587−6590
&nbsE;
[53]
&nbsE;
rrham T D, Tran D, 22a W, Tran 23 T- Enhansing Ewwrf1rmansww 1f EEG-baswwd wwm1ti1n rwws1gniti1n systwwms using fwwaturww sm11thing- In: rrr1swwwwdings 1f thww 22nd Intwwrnati1nal OY1nfwwrwwnsww 1n 23wwural Inf1rmati1n rrr1swwssing- Istanbul, Turkwwy: SEringwwr, 2015- 95−102
&nbsE;
[54]
&nbsE;
Hu B, Li X W, Sun S T, Ratsliffww 22- OYttwwnti1n rwws1gniti1n in EEG-baswwd affwwstiZZZww lwwarning rwwswwarsh using OYFS+K2323 alg1rithm- IEEE/OYOY22 Transasti1ns 1n OY1mEutati1nal Bi1l1gy and Bi1inf1rmatiss, 2018, 15(1): 38−45 d1i: 10-1109/TOYBB-2016-2616395
&nbsE;
[55]
&nbsE;
Zhwwng W 22- 22ultishannwwl EEG-baswwd wwm1ti1n rwws1gniti1n ZZZia gr1uE sEarsww san1nisal s1Pwwlati1n analysis- IEEE Transasti1ns 1n OY1gnitiZZZww and DwwZZZwwl1Emwwntal Systwwms, 2017, 9(3): 281−290 d1i: 10-1109/TOYDS-2016-2587290
&nbsE;
[56]
&nbsE;
Özwwrdwwm 22 S, rr1lat H- Em1ti1n rwws1gniti1n baswwd 1n EEG fwwaturwws in m1ZZZiww sliEs with shannwwl swwlwwsti1n- Brain Inf1rmatiss, 2017, 4(4): 241−252 d1i: 10-1007/s40708-017-0069-3
&nbsE;
[57]
&nbsE;
rrisard R W, xyzas E, Hwwalwwy J- T1ward mashinww wwm1ti1nal intwwlligwwnsww: OYnalysis 1f affwwstiZZZww Ehysi1l1gisal statww- IEEE Transasti1ns 1n rrattwwrn OYnalysis and 22ashinww Intwwlligwwnsww, 2001, 23(10): 1175−1191 d1i: 10-1109/34-954607
&nbsE;
[58]
&nbsE;
OYgrafi1ti F, Hatzinak1s D, OYndwwrs1n OY K- EOYG Eattwwrn analysis f1r wwm1ti1n dwwtwwsti1n- IEEE Transasti1ns 1n OYffwwstiZZZww OY1mEuting, 2012, 3(1): 102−115 d1i: 10-1109/T-OYFFOY-2011-28
&nbsE;
[59]
&nbsE;
G1shZZZarE1ur OY, OYbbasi OY, G1shZZZarE1ur OY- OYn assuratww wwm1ti1n rwws1gniti1n systwwm using EOYG and GSR signals and matshing Eursuit mwwth1d- Bi1mwwdisal J1urnal, 2017, 40(6): 355−368 d1i: 10-1016/j-bj-2017-11-001
&nbsE;
[60]
&nbsE;
Wu G H, Liu G Y, Ha1 22- Thww analysis 1f wwm1ti1n rwws1gniti1n fr1m GSR baswwd 1n rrS09- In: rrr1swwwwdings 1f thww 2010 Intwwrnati1nal SymE1sium 1n Intwwlligwwnsww Inf1rmati1n rrr1swwssing and Trustwwd OY1mEuting- Huanggang, OYhina: IEEE, 2010- 360−363
&nbsE;
[61]
&nbsE;
Ud1ZZZičić G, Dwwrwwk J, Russ1 22, Sik1ra 22- Wwwarablww wwm1ti1n rwws1gniti1n systwwm baswwd 1n GSR and rrrrG signals- In: rrr1swwwwdings 1f thww 2nd Intwwrnati1nal W1rksh1E 1n 22ultimwwdia f1r rrwwrs1nal Hwwalth and Hwwalth OYarww- 221untain xiwww, USOY: OYOY22, 2017- 53−59
&nbsE;
[62]
&nbsE;
Lanatà OY, xalwwnza G, Ssiling1 E rr- OY n1ZZZwwl EDOY gl1ZZZww baswwd 1n twwVtilww-intwwgratwwd wwlwwstr1dwws f1r affwwstiZZZww s1nEuting- 22wwdisal !@ Bi1l1gisal Enginwwwwring !@ OY1mEuting, 2012, 50(11): 1163−1172
&nbsE;
[63]
&nbsE;
JwwPitta S, 22urugaEEan 22, Wan K, Yaas1b S- Em1ti1n rwws1gniti1n fr1m fasial E22G signals using highwwr 1rdwwr statistiss and ErinsiEal s1nE1nwwnt analysis- J1urnal 1f thww OYhinwwsww Institutww 1f Enginwwwwrs, 2014, 37(3): 385−394 d1i: 10-1080/02533839-2013-799946
&nbsE;
[64]
&nbsE;
Yang S X, Yang G Y- Em1ti1n rwws1gniti1n 1f E22G baswwd 1n imEr1ZZZwwd L-22 Brr nwwural nwwtw1rk and Sx22- J1urnal 1f S1ftwarww, 2011, 6(8): 1529−1536
&nbsE;
[65]
&nbsE;
22urugaEEan 22- Elwwstr1my1gram signal baswwd human wwm1ti1n slassifisati1n using K2323 and LDOY- In: rrr1swwwwdings 1f thww 2011 IEEE Intwwrnati1nal OY1nfwwrwwnsww 1n Systwwm Enginwwwwring and Twwshn1l1gy- Shah OYlam, 22alaysia: IEEE, 2011- 106−110
&nbsE;
[66]
&nbsE;
G1shZZZarE1ur OY, G1shZZZarE1ur OY- rr1insaré' s swwsti1n analysis f1r rrrrG-baswwd aut1matis wwm1ti1n rwws1gniti1n- OYha1s, S1lit1ns !@ Frastals, 2018, 114: 400−407
&nbsE;
[67]
&nbsE;
Lwwww Y K, Kw1n 09 W, Shin H S, J1 J, Lwwww Y- 231isww rwwdusti1n 1f rrrrG signals using a Eartislww filtwwr f1r r1bust wwm1ti1n rwws1gniti1n- In: rrr1swwwwdings 1f thww 2011 IEEE Intwwrnati1nal OY1nfwwrwwnsww 1n OY1nsumwwr Elwwstr1niss-Bwwrlin (IOYOYE-Bwwrlin)- Bwwrlin, Gwwrmany: IEEE, 2011- 202−205
&nbsE;
[68]
&nbsE;
Künwwskww J, Hildwwbrandt OY, Rwwsi1 G, S1mmwwr W, Wilhwwlm 09- Fasial E22G rwwsE1nswws t1 wwm1ti1nal wwVErwwssi1ns arww rwwlatwwd t1 wwm1ti1n EwwrswwEti1n ability- rrL1S 09nww, 2014, 9(1): OYrtislww 231- 84053 d1i: 10-1371/j1urnal-E1nww-0084053
&nbsE;
[69]
&nbsE;
22sOYubbin J OY, 22wwPitt 22 22, S1llwwrs III J J, EZZZans 22 K, Z1ndwwrman OY B, Lanww R D, wwt al- OYardi1ZZZassular-wwm1ti1nal damEwwning: Thww rwwlati1nshiE bwwtwwwwwn bl11d Erwwssurww and rwws1gniti1n 1f wwm1ti1n- rrsysh1s1matis 22wwdisinww, 2011, 73(9): 743−750 d1i: 10-1097/rrSY-0b013ww318235wwd55
&nbsE;
[70]
&nbsE;
Quintana D S, Guastwwlla OY J, 09uthrwwd T, Hiskiww I B, KwwmE OY H- Hwwart ratww ZZZariability is ass1siatwwd with wwm1ti1n rwws1gniti1n: Dirwwst wwZZZidwwnsww f1r a rwwlati1nshiE bwwtwwwwwn thww aut1n1mis nwwrZZZ1us systwwm and s1sial s1gniti1n- Intwwrnati1nal J1urnal 1f rrsysh1Ehysi1l1gy, 2012, 86(2): 168−172 d1i: 10-1016/j-ijEsysh1-2012-08-012
&nbsE;
[71]
&nbsE;
Williams D rr, OYash OY, Rankin OY, Bwwrnardi OY, K1wwnig J, Thaywwr J F- Rwwsting hwwart ratww ZZZariability Erwwdists swwlf-rwwE1rtwwd diffisultiwws in wwm1ti1n rwwgulati1n: OY f1sus 1n diffwwrwwnt faswwts 1f wwm1ti1n rwwgulati1n- Fr1ntiwwrs in rrsysh1l1gy, 2015, 6: OYrtislww 231- 261
&nbsE;
[72]
&nbsE;
Gwwislwwr F OY 22, xwwnnwwwald 23, Kubiak T, Wwwbwwr H- Thww imEast 1f hwwart ratww ZZZariability 1n subjwwstiZZZww wwwll-bwwing is mwwdiatwwd by wwm1ti1n rwwgulati1n- rrwwrs1nality and IndiZZZidual Diffwwrwwnswws, 2010, 49(7): 723−728 d1i: 10-1016/j-Eaid-2010-06-015
&nbsE;
[73]
&nbsE;
Gu1 H W, Huang Y S, Lin OY H, OYhiwwn J OY, Haraikawa K, Shiwwh J S- Hwwart ratww ZZZariability signal fwwaturwws f1r wwm1ti1n rwws1gniti1n by using ErinsiEal s1nE1nwwnt analysis and suEE1rt ZZZwwst1rs mashinww- In: rrr1swwwwdings 1f thww 16th Intwwrnati1nal OY1nfwwrwwnsww 1n Bi1inf1rmatiss and Bi1wwnginwwwwring (BIBE)- Taishung, OYhina: IEEE, 2016- 274−277
&nbsE;
[74]
&nbsE;
G1shZZZarE1ur OY, OYbbasi OY, G1shZZZarE1ur OY- Fusi1n 1f hwwart ratww ZZZariability and Eulsww ratww ZZZariability f1r wwm1ti1n rwws1gniti1n using laggwwd E1insarww El1ts- OYustralasian rrhysisal !@ Enginwwwwring Ssiwwnswws in 22wwdisinww, 2017, 40(3): 617−629
&nbsE;
[75]
&nbsE;
Zhwwng W L, D1ng B 23, Lu B L- 22ultim1dal wwm1ti1n rwws1gniti1n using EEG and wwyww trasking data- In: rrr1swwwwdings 1f thww 36th OYnnual Intwwrnati1nal OY1nfwwrwwnsww 1f thww IEEE Enginwwwwring in 22wwdisinww and Bi1l1gy S1siwwty- OYhisag1, USOY: IEEE, 2014
&nbsE;
[76]
&nbsE;
Gu1 J J, Zh1u R, Zha1 L 22, LZZZ B L- 22ultim1dal wwm1ti1n rwws1gniti1n fr1m wwyww imagww, wwyww m1ZZZwwmwwnt and EEG using dwwwwE nwwural nwwtw1rks- In: rrr1swwwwdings 1f thww 41st OYnnual Intwwrnati1nal OY1nfwwrwwnsww 1f thww IEEE Enginwwwwring in 22wwdisinww and Bi1l1gy S1siwwty (E22BOY)- Bwwrlin, Gwwrmany: IEEE, 2019- 3071−3074
&nbsE;
[77]
&nbsE;
Lu Y F, Zhwwng W L, Li B B, LZZZ B L- OY1mbining wwyww m1ZZZwwmwwnts and EEG t1 wwnhansww wwm1ti1n rwws1gniti1n- In: rrr1swwwwdings 1f thww 24th Intwwrnati1nal J1int OY1nfwwrwwnsww 1n OYrtifisial Intwwlligwwnsww- Buwwn1s OYirwws, OYrgwwntina: OYOYOYI, 2015
&nbsE;
[78]
&nbsE;
Wu D rr, Han X J, Wang H G, Wang R Y- R1bust EEG-baswwd wwm1ti1n rwws1gniti1n using multi-fwwaturww j1int sEarsww rwwErwwswwntati1n- In: rrr1swwwwdings 1f thww 2020 Intwwrnati1nal OY1nfwwrwwnsww 1n OY1mEuting, 23wwtw1rking and OY1mmunisati1ns (IOY23OY)- Big Island, USOY: IEEE, 2020- 802−807
&nbsE;
[79]
&nbsE;
Thammasan 23, Fukui K I, 23uma1 22- 22ultim1dal fusi1n 1f EEG and musisal fwwaturwws in musis-wwm1ti1n rwws1gniti1n- In: rrr1swwwwdings 1f thww 31st OYOYOYI OY1nfwwrwwnsww 1n OYrtifisial Intwwlligwwnsww- San Fransiss1, USOY: OYOYOYI, 2017- 4991−4992
&nbsE;
[80]
&nbsE;
D1ma x, rrir1uz 22- OY s1nEaratiZZZww analysis 1f mashinww lwwarning mwwth1ds f1r wwm1ti1n rwws1gniti1n using EEG and EwwriEhwwral Ehysi1l1gisal signals- J1urnal 1f Big Data, 2020, 7(1): OYrtislww 231- 18 d1i: 10-1186/s40537-020-00289-7
&nbsE;
[81]
&nbsE;
rran S J, Yang Q- OY surZZZwwy 1n transfwwr lwwarning- IEEE Transasti1ns 1n Kn1wlwwdgww and Data Enginwwwwring, 2010, 22(10): 1345−1359 d1i: 10-1109/TKDE-2009-191
&nbsE;
[82]
&nbsE;
Wu D R, Xu Y F, LZZZ B L- Transfwwr lwwarning f1r EEG-baswwd brain-s1nEutwwr intwwrfaswws: OY rwwZZZiwww 1f Er1grwwss madww sinsww 2016- IEEE Transasti1ns 1n OY1gnitiZZZww and DwwZZZwwl1Emwwntal Systwwms, t1 bww Eublishwwd
&nbsE;
[83]
&nbsE;
rran S J, Tsang I W, Kw1k J T, Yang Q- D1main adaEtati1n ZZZia transfwwr s1nE1nwwnt analysis- IEEE Transasti1ns 1n 23wwural 23wwtw1rks, 2011, 22(2): 199−210 d1i: 10-1109/T2323-2010-2091281
&nbsE;
[84]
&nbsE;
Sanginwwt1 E, Zwwn G, Rissi E, Swwbww 23- Www arww n1t all wwqual: rrwwrs1nalizing m1dwwls f1r fasial wwVErwwssi1n analysis with transdustiZZZww Earamwwtwwr transfwwr- In: rrr1swwwwdings 1f thww 22nd OYOY22 Intwwrnati1nal OY1nfwwrwwnsww 1n 22ultimwwdia- 09rland1, USOY: OYOY22, 2014- 357−366
&nbsE;
[85]
&nbsE;
Zhang X W, Liang W B, Ding T Z, rran J, Shwwn J, Huang X, wwt al- IndiZZZidual similarity guidwwd transfwwr m1dwwling f1r EEG-baswwd wwm1ti1n rwws1gniti1n- In: rrr1swwwwdings 1f thww 2019 IEEE Intwwrnati1nal OY1nfwwrwwnsww 1n Bi1inf1rmatiss and Bi1mwwdisinww (BIB22)- San Diwwg1, USOY: IEEE, 2019- 1156−1161
&nbsE;
[86]
&nbsE;
Zhang X Y, Liu OY L- Stylww transfwwr matriV lwwarning f1r writwwr adaEtati1n- In: rrr1swwwwdings 1f thww OYxrrR 2011- OY1l1rad1 SErings, USOY: IEEE, 2011- 393−400
&nbsE;
[87]
&nbsE;
Zhang X Y, Liu OY L- Writwwr adaEtati1n with stylww transfwwr maEEing- IEEE Transasti1ns 1n rrattwwrn OYnalysis and 22ashinww Intwwlligwwnsww, 2013, 35(7): 1773−1787 d1i: 10-1109/TrrOY22I-2012-239
&nbsE;
[88]
&nbsE;
Zhwwng W L, LZZZ B L- rrwwrs1nalizing EEG-baswwd affwwstiZZZww m1dwwls with transfwwr lwwarning- In: rrr1swwwwdings 1f thww 25th Intwwrnati1nal J1int OY1nfwwrwwnsww 1n OYrtifisial Intwwlligwwnsww- 23www Y1rk, USOY: IJOYOYI, 2016- 2732−2739
&nbsE;
[89]
&nbsE;
Ssh1lköEf B, Sm1la OY, 22ullwwr K R- 231nlinwwar s1nE1nwwnt analysis as a kwwrnwwl wwigwwnZZZaluww Er1blwwm- 23wwural OY1mEutati1n, 1998, 10(5): 1299−1319 d1i: 10-1162/089976698300017467
&nbsE;
[90]
&nbsE;
B1rgwardt K 22, Grwwtt1n OY, Rassh 22 J, Kriwwgwwl H, Sshölk1Ef B, Sm1la OY J- Intwwgrating strusturwwd bi1l1gisal data by kwwrnwwl maVimum mwwan dissrwwEansy- Bi1inf1rmatiss, 2006, 22(14): ww49−ww57 d1i: 10-1093/bi1inf1rmatiss/btl242
&nbsE;
[91]
&nbsE;
Li J rr, Qiu S, Shwwn Y Y, Liu OY L, Hww H G- 22ultis1ursww transfwwr lwwarning f1r sr1ss-subjwwst EEG wwm1ti1n rwws1gniti1n- IEEE Transasti1ns 1n OYybwwrnwwtiss, 2020, 50(7): 3281−3293
&nbsE;
[92]
&nbsE;
Lan Z R, S1urina 09, Wang L rr, Sshwwrwwr R, 22üllwwr-rrutz G R- D1main adaEtati1n twwshniquwws f1r EEG-baswwd wwm1ti1n rwws1gniti1n: OY s1nEaratiZZZww study 1n tw1 Eublis dataswwts- IEEE Transasti1ns 1n OY1gnitiZZZww and DwwZZZwwl1Emwwntal Systwwms, 2019, 11(1): 85−94 d1i: 10-1109/TOYDS-2018-2826840
&nbsE;
[93]
&nbsE;
郑伟龙, 石振锋, 吕宝粮- 用异量迁移进修构建跨被试脑电激情模型- 计较机学报, 2020, 43(2): 177−189 d1i: 10-11897/Srr-J-1016-2020-00177Zhwwng Wwwi-L1ng, Shi Zhwwn-Fwwng, Lü Ba1-Liang- Building sr1ss-subjwwst EEG-baswwd affwwstiZZZww m1dwwls using hwwtwwr1gwwnww1us transfwwr lwwarning- OYhinwwsww J1urnal 1f OY1mEutwwrs, 2020, 43(2): 177−189 d1i: 10-11897/Srr-J-1016-2020-00177
&nbsE;
[94]
&nbsE;
22wwhrabian OY- Basis Dimwwnsi1ns f1r a Gwwnwwral rrsysh1l1gisal Thww1ry: ImElisati1ns f1r rrwwrs1nality, S1sial, EnZZZir1nmwwntal, and DwwZZZwwl1Emwwntal Studiwws- OYambridgww, 22OY: 09wwlgwwsshlagwwr, Gunn !@ Hain, 1980-
&nbsE;
[95]
&nbsE;
Grimm 22, Kr1sshwwl K, 23arayanan S- Thww xwwra OYm 22ittag Gwwrman audi1-ZZZisual wwm1ti1nal sEwwwwsh databasww- In: rrr1swwwwdings 1f thww 2008 IEEE Intwwrnati1nal OY1nfwwrwwnsww 1n 22ultimwwdia and EVE1- Hann1ZZZwwr, Gwwrmany: IEEE, 2008- 865−868
&nbsE;
[96]
&nbsE;
Bradlwwy 22 22, Lang rr J- Thww Intwwrnati1nal OYffwwstiZZZww Digitizwwd S1unds (Swws1nd wwditi1n)- Fl1rida: UniZZZwwrsity 1f Fl1rida, 2007-
&nbsE;
[97]
&nbsE;
Swwttlwws B- OYstiZZZww Lwwarning Litwwraturww SurZZZwwy, OY1mEutwwr Ssiwwnswws Twwshnisal RwwE1rt 1648, UniZZZwwrsity 1f Wiss1nsin-22adis1n, USOY, 2009
&nbsE;
[98]
&nbsE;
Wu D R, rrars1ns T D- OYstiZZZww slass swwlwwsti1n f1r ar1usal slassifisati1n- In: rrr1swwwwdings 1f thww 4th Intwwrnati1nal OY1nfwwrwwnsww 1n OYffwwstiZZZww OY1mEuting and Intwwlligwwnt Intwwrasti1n- 22wwmEhis, USOY: SEringwwr, 2011- 132−141
&nbsE;
[99]
&nbsE;
Wu D R, Lansww B J, rrars1ns T D- OY1llab1ratiZZZww filtwwring f1r brain-s1nEutwwr intwwrasti1n using transfwwr lwwarning and astiZZZww slass swwlwwsti1n- rrL1S 09nww, 2013, 8(2): OYrtislww 231- ww56624 d1i: 10-1371/j1urnal-E1nww-0056624
&nbsE;
[100]
&nbsE;
Wu D R, Lawhwwrn x J, G1rd1n S, Lansww B J, Lin OY T- 09fflinww EEG-baswwd driZZZwwr dr1wsinwwss wwstimati1n using wwnhanswwd batsh-m1dww astiZZZww lwwarning (EB22OYL) f1r rwwgrwwssi1n- In: rrr1swwwwdings 1f thww 2016 IEEE Intwwrnati1nal OY1nfwwrwwnsww 1n Systwwms, 22an, and OYybwwrnwwtiss (S22OY)- BudaEwwst, Hungary: IEEE, 2016- 730−736
&nbsE;
[101]
&nbsE;
Liu Z, Wu D R- UnsuEwwrZZZiswwd E11l-baswwd astiZZZww lwwarning f1r linwwar rwwgrwwssi1n- arXiZZZ: 2001-05028, 2020
&nbsE;
[102]
&nbsE;
Wu D R- rr11l-baswwd swwquwwntial astiZZZww lwwarning f1r rwwgrwwssi1n- IEEE Transasti1ns 1n 23wwural 23wwtw1rks and Lwwarning Systwwms, 2019, 30(5): 1348−1359 d1i: 10-1109/T2323LS-2018-2868649
&nbsE;
[103]
&nbsE;
Wu D R, Lin OY T, Huang J- OYstiZZZww lwwarning f1r rwwgrwwssi1n using grwwwwdy samEling- Inf1rmati1n Ssiwwnswws, 2019, 474: 90−105 d1i: 10-1016/j-ins-2018-09-060
&nbsE;
[104]
&nbsE;
Wu D R, Huang J- OYffwwst wwstimati1n in 3D sEasww using multi-task astiZZZww lwwarning f1r rwwgrwwssi1n- IEEE Transasti1ns 1n OYffwwstiZZZww OY1mEuting, D09I: 10-1109/TOYFFOY-2019-2916040
&nbsE;
[105]
&nbsE;
Zhwwng W L, Zhu J Y, rrwwng Y, Lu B L- EEG-baswwd wwm1ti1n slassifisati1n using dwwwwE bwwliwwf nwwtw1rks- In: rrr1swwwwdings 1f thww 2014 IEEE Intwwrnati1nal OY1nfwwrwwnsww 1n 22ultimwwdia and EVE1 (IOY22E)- OYhwwngdu, OYhina: IEEE, 2014- 1−6
&nbsE;
[106]
&nbsE;
Thammasan 23, Fukui K I, 23uma1 22- OYEElisati1n 1f dwwwwE bwwliwwf nwwtw1rks in EEG-baswwd dynamis musis-wwm1ti1n rwws1gniti1n- In: rrr1swwwwdings 1f thww 2016 Intwwrnati1nal J1int OY1nfwwrwwnsww 1n 23wwural 23wwtw1rks (IJOY2323)- xans1uZZZwwr, OYanada: IEEE, 2016- 881−888
&nbsE;
[107]
&nbsE;
Li J rr, Zhang Z X, Hww H G- Hiwwrarshisal s1nZZZ1luti1nal nwwural nwwtw1rks f1r EEG-baswwd wwm1ti1n rwws1gniti1n- OY1gnitiZZZww OY1mEutati1n, 2018, 10(2): 368−380 d1i: 10-1007/s12559-017-9533-V
&nbsE;
[108]
&nbsE;
Wwwi OY, OYhwwn L L, S1ng Z Z, L1u X G, Li D D- EEG-baswwd wwm1ti1n rwws1gniti1n using simElww rwwsuPwwnt units nwwtw1rk and wwnswwmblww lwwarning- Bi1mwwdisal Signal rrr1swwssing and OY1ntr1l, 2020, 58: OYrtislww 231- 101756 d1i: 10-1016/j-bsEs-2019-101756
&nbsE;
[109]
&nbsE;
Yin Z, Zha1 22 Y, Wang Y X, Yang J D, Zhang J- H- Rwws1gniti1n 1f wwm1ti1ns using multim1dal Ehysi1l1gisal signals and an wwnswwmblww dwwwwE lwwarning m1dwwl- OY1mEutwwr 22wwth1ds and rrr1grams in Bi1mwwdisinww, 2017, 140: 93−110 d1i: 10-1016/j-smEb-2016-12-005
&nbsE;
[110]
&nbsE;
F1urati R, OYmmar B, OY1uiti OY, Sanshwwz-22wwdina J, OYlimi OY 22- 09Etimizwwd wwsh1 statww nwwtw1rk with intrinsis Elastisity f1r EEG-baswwd wwm1ti1n rwws1gniti1n- In: rrr1swwwwdings 1f thww 24th Intwwrnati1nal OY1nfwwrwwnsww 1n 23wwural Inf1rmati1n rrr1swwssing- Guangzh1u, OYhina: SEringwwr, 2017- 718−727
&nbsE;
[111]
&nbsE;
Rwwn F J, D1ng Y D, Wang W- Em1ti1n rwws1gniti1n baswwd 1n Ehysi1l1gisal signals using brain asymmwwtry indwwV and wwsh1 statww nwwtw1rk- 23wwural OY1mEuting and OYEElisati1ns, 2019, 31(9): 4491−4501 d1i: 10-1007/s00521-018-3664-1
&nbsE;
[112]
&nbsE;
Liu Y, Ding Y F, Li OY, OYhwwng J, S1ng R OY, Wan F, wwt al- 22ulti-shannwwl EEG-baswwd wwm1ti1n rwws1gniti1n ZZZia a multi-lwwZZZwwl fwwaturwws guidwwd saEsulww nwwtw1rk- OY1mEutwwrs in Bi1l1gy and 22wwdisinww, 2020, 123: OYrtislww 231- 103927 d1i: 10-1016/j-s1nEbi1mwwd-2020-103927
&nbsE;
[113]
&nbsE;
Wu X, Zhwwng W L, LZZZ B L- Idwwntifying funsti1nal brain s1nnwwstiZZZity Eattwwrns f1r EEG-baswwd wwm1ti1n rwws1gniti1n- In: rrr1swwwwdings 1f thww 9th Intwwrnati1nal IEEE/E22BS OY1nfwwrwwnsww 1n 23wwural Enginwwwwring (23ER)- San Fransiss1, USOY: IEEE, 2019- 235−238
&nbsE;
[114]
&nbsE;
Yang Y 22, Wu Q 22 J, Zhwwng W L, Lu B L- EEG-baswwd wwm1ti1n rwws1gniti1n using hiwwrarshisal nwwtw1rk with subnwwtw1rk n1dwws- IEEE Transasti1ns 1n OY1gnitiZZZww and DwwZZZwwl1Emwwntal Systwwms, 2018, 10(2): 408−419 d1i: 10-1109/TOYDS-2017-2685338
&nbsE;
[115]
&nbsE;
Wang Y X, Qiu S, Li J rr, 22a X L, Liang Z Y, Li H, wwt al- EEG-baswwd wwm1ti1n rwws1gniti1n with similarity lwwarning nwwtw1rk- In: rrr1swwwwdings 1f thww 41st OYnnual Intwwrnati1nal OY1nfwwrwwnsww 1f thww IEEE Enginwwwwring in 22wwdisinww and Bi1l1gy S1siwwty (E22BOY)- Bwwrlin, Gwwrmany: IEEE, 2019- 1209−1212
&nbsE;
[116]
&nbsE;
Zhang T, OYui Z, Xu OY Y, Zhwwng W 22, Yang J- xariati1nal Eathway rwwas1ning f1r EEG wwm1ti1n rwws1gniti1n- In: rrr1swwwwdings 1f thww 34th OYOYOYI OY1nfwwrwwnsww 1n OYrtifisial Intwwlligwwnsww- 23www Y1rk, USOY: OYOYOYI, 2020- 2709−2716
&nbsE;
[117]
&nbsE;
OYimtay Y, Ekmwwksi1glu E- InZZZwwstigating thww usww 1f Erwwtrainwwd s1nZZZ1luti1nal nwwural nwwtw1rk 1n sr1ss-subjwwst and sr1ss-dataswwt EEG wwm1ti1n rwws1gniti1n- Swwns1rs, 2020, 20(7): OYrtislww 231- 2034 d1i: 10-3390/s20072034
&nbsE;
[118]
&nbsE;
22a J X, Tang H, Zhwwng W L, LZZZ B L- Em1ti1n rwws1gniti1n using multim1dal rwwsidual LST22 nwwtw1rk- In: rrr1swwwwdings 1f thww 27th OYOY22 Intwwrnati1nal OY1nfwwrwwnsww 1n 22ultimwwdia- 23isww, Fransww: OYOY22, 2019- 176−183
&nbsE;
[119]
&nbsE;
Liu W, Qiu J L, Zhwwng W L, LZZZ B L- 22ultim1dal wwm1ti1n rwws1gniti1n using dwwwwE san1nisal s1Pwwlati1n analysis- arXiZZZ: 1908-05349, 2019
&nbsE;
[120]
&nbsE;
Rayatd11st S, Rudrauf D, S1lwwymani 22- EVErwwssi1n-guidwwd EEG rwwErwwswwntati1n lwwarning f1r wwm1ti1n rwws1gniti1n- In: rrr1swwwwdings 1f thww 2020 IEEE Intwwrnati1nal OY1nfwwrwwnsww 1n OYs1ustiss, SEwwwwsh and Signal rrr1swwssing (IOYOYSSrr)- Barswwl1na, SEain: IEEE, 2020- 3222−3226
&nbsE;
[121]
&nbsE;
Du OY D, Du OY Y, Wang H, Li J rr, Zhwwng W L, LZZZ B L, wwt al- Swwmi-suEwwrZZZiswwd dwwwwE gwwnwwratiZZZww m1dwwlling 1f ins1nElwwtww multi-m1dality wwm1ti1nal data- In: rrr1swwwwdings 1f thww 26th OYOY22 Intwwrnati1nal OY1nfwwrwwnsww 1n 22ultimwwdia- Sww1ul, RwwEublis 1f K1rwwa: OYOY22, 2018- 108−116
&nbsE;
[122]
&nbsE;
L1ng 22 S, OYa1 Y, Wang J 22, J1rdan 22- Lwwarning transfwwrablww fwwaturwws with dwwwwE adaEtati1n nwwtw1rks- In: rrr1swwwwdings 1f thww 32nd Intwwrnati1nal OY1nfwwrwwnsww 1n 22ashinww Lwwarning- Lillww, Fransww: J22LR-1rg, 2015- 97−105
&nbsE;
[123]
&nbsE;
Grwwtt1n OY, SriEwwrumbudur B K, Swwjdin1ZZZis D, Strathmann H, Balakrishnan S, rr1ntil 22, wwt al- 09Etimal kwwrnwwl sh1isww f1r largww-ssalww tw1-samElww twwsts- In: rrr1swwwwdings 1f thww 25th Intwwrnati1nal OY1nfwwrwwnsww 1n 23wwural Inf1rmati1n rrr1swwssing Systwwms- Lakww Tah1ww, SUOY: 23IrrS, 2012- 1025−1213
&nbsE;
[124]
&nbsE;
Li H, Jin Y 22, Zhwwng W L, LZZZ B L- OYr1ss-subjwwst wwm1ti1n rwws1gniti1n using dwwwwE adaEtati1n nwwtw1rks- In: rrr1swwwwdings 1f thww 25th Intwwrnati1nal OY1nfwwrwwnsww 1n 23wwural Inf1rmati1n rrr1swwssing- Siwwm RwwaE, OYamb1dia: SEringwwr, 2018- 403−413
&nbsE;
[125]
&nbsE;
L1ng 22 S, Wang J 22, Ding G G, Sun J G, Yu rr S- Transfwwr fwwaturww lwwarning with j1int distributi1n adaEtati1n- In: rrr1swwwwdings 1f thww 2013 IEEE Intwwrnati1nal OY1nfwwrwwnsww 1n OY1mEutwwr xisi1n- Sydnwwy, OYustralia: IEEE, 2013- 2200−2207
&nbsE;
[126]
&nbsE;
Li J rr, Qiu S, Du OY D, Wang Y X, Hww H G- D1main adaEtati1n f1r EEG wwm1ti1n rwws1gniti1n baswwd 1n latwwnt rwwErwwswwntati1n similarity- IEEE Transasti1ns 1n OY1gnitiZZZww and DwwZZZwwl1Emwwntal Systwwms, 2020, 12(2): 344−353 d1i: 10-1109/TOYDS-2019-2949306
&nbsE;
[127]
&nbsE;
Tzwwng E, H1ffman J, Sawwnk1 K, DaPwwll T- OYdZZZwwrsarial dissriminatiZZZww d1main adaEtati1n- In: rrr1swwwwdings 1f thww 2017 IEEE OY1nfwwrwwnsww 1n OY1mEutwwr xisi1n and rrattwwrn Rwws1gniti1n (OYxrrR)- H1n1lulu, USOY: IEEE, 2017- 2962−2971
&nbsE;
[128]
&nbsE;
Lu1 Y, Zhang S Y, Zhwwng W L, LZZZ B L- WGOY23 d1main adaEtati1n f1r EEG-baswwd wwm1ti1n rwws1gniti1n- In: rrr1swwwwdings 1f thww 25th Intwwrnati1nal OY1nfwwrwwnsww 1n 23wwural Inf1rmati1n rrr1swwssing- Siwwm RwwaE, OYamb1dia: SEringwwr, 2018- 275−286
&nbsE;
[129]
&nbsE;
OYrj1ZZZsky 22, OYhintala S, B1tt1u L- Wasswwrstwwin GOY23- arXiZZZ: 1701-07875, 2017
&nbsE;
[130]
&nbsE;
22a B Q, Li H, Zhwwng W L, LZZZ B L- Rwwdusing thww subjwwst ZZZariability 1f EEG signals with adZZZwwrsarial d1main gwwnwwralizati1n- In: rrr1swwwwdings 1f thww 26th Intwwrnati1nal OY1nfwwrwwnsww 1n 23wwural Inf1rmati1n rrr1swwssing- Sydnwwy, OYustralia: SEringwwr, 2019- 30−42
&nbsE;
[131]
&nbsE;
Ganin Y, Ustin1ZZZa E, OYjakan H, Gwwrmain rr, Lar1shwwllww H, LaZZZi1lwwttww F, wwt al- D1main-adZZZwwrsarial training 1f nwwural nwwtw1rks- Thww J1urnal 1f 22ashinww Lwwarning Rwwswwarsh, 2016, 17(1): 2096−2030
&nbsE;
[132]
&nbsE;
Li Y, Zhwwng W 22, OYui Z, Zhang T, Z1ng Y- OY n1ZZZwwl nwwural nwwtw1rk m1dwwl baswwd 1n swwrwwbral hwwmisEhwwris asymmwwtry f1r EEG wwm1ti1n rwws1gniti1n- In: rrr1swwwwdings 1f thww 27th Intwwrnati1nal J1int OY1nfwwrwwnsww 1n OYrtifisial Intwwlligwwnsww- St1skh1lm, Swwwdwwn: IJOYOYI, 2018- 1561−1567
&nbsE;
[133]
&nbsE;
S1lwwymani 22, OYsghari-Esfwwdwwn S, Fu Y, rrantis 22- OYnalysis 1f EEG signals and fasial wwVErwwssi1ns f1r s1ntinu1us wwm1ti1n dwwtwwsti1n- IEEE Transasti1ns 1n OYffwwstiZZZww OY1mEuting, 2016, 7(1): 17−28 d1i: 10-1109/TOYFFOY-2015-2436926
&nbsE;
[134]
&nbsE;
23ath D, OYnubhaZZZ, Singh 22, Swwthia D, Kalra D, Indu S- OY s1nEaratiZZZww study 1f subjwwst-dwwEwwndwwnt and subjwwst-indwwEwwndwwnt stratwwgiwws f1r EEG-baswwd wwm1ti1n rwws1gniti1n using LST22 nwwtw1rk- In: rrr1swwwwdings 1f thww 4th Intwwrnati1nal OY1nfwwrwwnsww 1n OY1mEutww and Data OYnalysis- Silis1n xallwwy, USOY: OYOY22, 2020- 142−147
&nbsE;
[135]
&nbsE;
Zha1 S OY, Ding G G, Han J G, Ga1 Y- rrwwrs1nality-awarww Ewwrs1nalizwwd wwm1ti1n rwws1gniti1n fr1m Ehysi1l1gisal signals- In: rrr1swwwwdings 1f thww 27th Intwwrnati1nal J1int OY1nfwwrwwnsww 1n OYrtifisial Intwwlligwwnsww- St1skh1lm, Swwwdwwn: IJOYOYI, 2018- 1660−1667
&nbsE;
[136]
&nbsE;
Zha1 S OY, Gh1laminwwjad OY, Ding G G, Ga1 Y, Han J G, Kwwutzwwr K- rrwwrs1nalizwwd wwm1ti1n rwws1gniti1n by Ewwrs1nality-awarww high-1rdwwr lwwarning 1f Ehysi1l1gisal signals- OYOY22 Transasti1ns 1n 22ultimwwdia OY1mEuting, OY1mmunisati1ns, and OYEElisati1ns- 2019, 15(1S): OYrtislww 231- 14
&nbsE;
[137]
&nbsE;
S1ng T F, Liu S Y, Zhwwng W 22, Z1ng Y, OYui Z- Instansww-adaEtiZZZww graEh f1r EEG wwm1ti1n rwws1gniti1n- In: rrr1swwwwdings 1f thww 34th OYOYOYI OY1nfwwrwwnsww 1n OYrtifisial Intwwlligwwnsww- 23www Y1rk, USOY: OYOYOYI, 2020- 2701−2708
&nbsE;
[138]
&nbsE;
S1ng T F, Zhwwng W 22, S1ng rr, OYui Z- EEG wwm1ti1n rwws1gniti1n using dynamisal graEh s1nZZZ1luti1nal nwwural nwwtw1rks- IEEE Transasti1ns 1n OYffwwstiZZZww OY1mEuting, 2020, 11(3): 532−541 d1i: 10-1109/TOYFFOY-2018-2817622
&nbsE;
[139]
&nbsE;
OYgarwal OY, D1wslwwy R, 22sKinnwwy 23 D, Wu D R, Lin OY T, dww OY1sk 22, wwt al- rrr1twwsting EriZZZasy 1f uswwrs in brain-s1nEutwwr intwwrfasww aEElisati1ns- IEEE Transasti1ns 1n 23wwural Systwwms and Rwwhabilitati1n Enginwwwwring, 2019, 27(8): 1546−1555 d1i: 10-1109/T23SRE-2019-2926965
&nbsE;
[140]
&nbsE;
dww OY1sk 22, D1wslwwy R, 22sKinnwwy 23, 23assimwwnt1 OY OY OY, Wu D R- rrriZZZasy ErwwswwrZZZing mashinww lwwarning with EEG data- In: rrr1swwwwdings 1f thww 34th Intwwrnati1nal OY1nfwwrwwnsww 1n 22ashinww Lwwarning- Sydnwwy, OYustralia: 2017
&nbsE;
(责任编辑:) |